Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542525

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Lysosomal Storage Diseases , Mucopolysaccharidosis II , Humans , Stem Cells , Cell Line , Tooth, Deciduous , Lysosomes , Dental Pulp , Cell Differentiation/physiology , Cell Proliferation
2.
Article En | MEDLINE | ID: mdl-37937567

INTRODUCTION: When it comes to disease modeling, countless models are available for Lysosomal Storage Diseases (LSD). Historically, two major approaches are well-established: in vitro assessments are performed in patient fibroblasts, while in vivo pre-clinical studies are performed in mouse models. Still, both platforms have a series of drawbacks. Thus, we implemented two alternative and innovative protocols to mimic a particular sub-group of LSDs, the Mucopolysaccharidoses both in vitro and in vivo. METHODS: The first one relies on a non-invasive approach using dental pulp stem cells from deciduous teeth (SHEDs). SHEDs are multipotent neuronal precursors that can easily be collected. The second uses a state-of-the-art gene editing technology (CRISPR/Cas9) to generate zebrafish disease models. RESULTS: Even though this is an ongoing project, we have already established and characterized two MPS II and one MPS VI SHED cell models. These cells self-maintain through several passages and can give rise to a variety of cells including neurons. Furthermore, all MPS-associated sub-cellular phenotypes we have assessed so far are easily observable in these cells. Regarding our zebrafish models, we have successfully knocked down both naglu and hgsnat and the first results we got from the behavioral analysis are promising ones, as we can observe altered activity and sleep patterns in the genetically modified fish. For this particular approach we chose MPS III forms as our target disorders, since their neurological features (hyperactivity, seizures and motor impairment) and lifespan decrease would be easily recognizable in zebrafish. CONCLUSION: Now that these methods are well-established in our lab, their potential is immense. On one hand, the newly developed models will be of ultimate value to understand the mechanisms underlying MPS sub-cellular pathology, which have to be further elucidated. On the other hand, they will constitute an optimal platform for drug testing in house. Also noteworthy, our models will be published as lab resources and made available for the whole LSD community.

3.
Biomedicines ; 11(1)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36672721

Since its discovery in 1955, the understanding of the lysosome has continuously increased. Once considered a mere waste removal system, the lysosome is now recognised as a highly crucial cellular component for signalling and energy metabolism. This notable evolution raises the need for a summarized review of the lysosome's biology. As such, throughout this article, we will be compiling the current knowledge regarding the lysosome's biogenesis and functions. The comprehension of this organelle's inner mechanisms is crucial to perceive how its impairment can give rise to lysosomal disease (LD). In this review, we highlight some examples of LD fine-tuned mechanisms that are already established, as well as others, which are still under investigation. Even though the understanding of the lysosome and its pathologies has expanded through the years, some of its intrinsic molecular aspects remain unknown. In order to illustrate the complexity of the lysosomal diseases we provide a few examples that have challenged the established single gene-single genetic disorder model. As such, we believe there is a strong need for further investigation of the exact abnormalities in the pathological pathways in lysosomal disease.

5.
Foods ; 9(12)2020 Nov 29.
Article En | MEDLINE | ID: mdl-33260373

The industrial production of wine generates annually tons of waste that can and must be properly reused to reduce its polluting load ad increase the availability of passive ingredients to be used in human nutrition. Grape pomace, a by-product of winemaking, beyond being of nutritional value is a bioactive source with high potential value and benefits for human health. Having as main goal the preliminary perception of the potential use of this by-product, the aim of this study was the characterization of eight different grape pomaces. In this sense, ash content, relative ash, moisture, pH, microorganisms, metals (Al, Cd, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, and Zn), and semi-metal (As) were reported. The parameter that limits the daily amount ingested of this product is its arsenic content, a non-essential element that belongs to the group of semi-metal. Considering the obtained results and in the light of the restrictions imposed through the legislation in regulations set by the European Commission, the inclusion of grape pomace in the industrial production of foodstuffs could be a step towards the future of human nutrition and health.

6.
Food Microbiol ; 91: 103550, 2020 Oct.
Article En | MEDLINE | ID: mdl-32539976

Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we designed two sets of primers for the detection and quantification of the multicopper oxidase gene (MCO), which encodes an enzyme involved in BAs degradation, and endogenous (glyceraldehyde-3-phosphate dehydrogenase) gene (GAPDH) in Lactobacillus casei group by real-time PCR (qPCR). We tested 15 Lactobacillus strains in the screening assays (thus, MCO gene possessing assay (PCR) and monitoring of BAs degradation by HPLC-UV), in which Lactobacillus casei CCDM 198 exhibited the best degradation abilities. For this strain, we monitored the expression of the target gene (MCO) in time (qPCR), the effect of redox treatments (cysteine, ascorbic acid) on the expression of the gene, and the ability to degrade BAs not only in a modified MRS medium (MRS/2) but also in a real food sample (milk). Moreover, decarboxylase activity (ability to form BAs) of this strain was excluded. According to the results, CCDM 198 significantly (P < 0.05) reduced BAs (putrescine, histamine, tyramine, cadaverine), up to 25% decline in 48 h. The highest level of relative expression of MCO (5.21 ± 0.14) was achieved in MRS/2 media with cysteine.


Bacterial Proteins/genetics , Biogenic Amines/metabolism , Lacticaseibacillus casei/metabolism , Oxidoreductases/genetics , Animals , Ascorbic Acid/analysis , Ascorbic Acid/metabolism , Bacterial Proteins/metabolism , Biogenic Amines/analysis , Chromatography, High Pressure Liquid , Culture Media/chemistry , Cysteine/analysis , Cysteine/metabolism , Gene Expression Regulation, Bacterial , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Lactobacillus/enzymology , Lactobacillus/genetics , Lactobacillus/growth & development , Lactobacillus/metabolism , Lacticaseibacillus casei/enzymology , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/growth & development , Milk/chemistry , Oxidoreductases/metabolism , Real-Time Polymerase Chain Reaction
7.
Stem Cell Res ; 45: 101794, 2020 05.
Article En | MEDLINE | ID: mdl-32388441

Fabry Disease (FD) is a multisystemic X-linked disorder that belongs to the group of lysosomal storage disorders (LSDs). Causal mutations on alpha-galactosidase A (α-Gal A) commonly lead to abnormal protein and consequently to FD. Since it is an X-linked disease, males are primarily affected. This work describes the generation of induced Pluripotent Stem Cells (iPSCs) from skin fibroblasts from a FD patient, using non-integrative episomal vectors. Differentiation of iPSCs can be applied to generate a variety of cell types with high degree of genetic complexity that would otherwise be difficult to obtain.


Fabry Disease , Induced Pluripotent Stem Cells , Fabry Disease/genetics , Hemizygote , Humans , Male , Mutation , alpha-Galactosidase/genetics
9.
Stem Cell Res ; 41: 101595, 2019 12.
Article En | MEDLINE | ID: mdl-31678773

Gaucher Disease (GD) type 3 is a neurological form of a multisystemic autosomal recessive disorder belonging to the group of lysosomal storage diseases. Causal mutations in the glucocerebrosidase 1 (GBA1) commonly lead to abnormal protein and GD, heterozygosity is a genetic risk factor for Parkinson's disease. This work describes the use of a non-integrative approach using Sendai Virus delivery to establish induced Pluripotent Stem Cells (iPSCs) from fibroblasts from a GD type 3 patient. Differentiation of iPSCs can be employed to generate a variety of complex cell types with a high degree of genetic complexity that would otherwise be unattainable.


Cell Differentiation , Fibroblasts/pathology , Gaucher Disease/genetics , Gaucher Disease/pathology , Glucosylceramidase/genetics , Induced Pluripotent Stem Cells/pathology , Mutation , Adult , Cells, Cultured , Fibroblasts/metabolism , Heterozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Male
10.
Int J Mol Sci ; 20(23)2019 Nov 24.
Article En | MEDLINE | ID: mdl-31771289

Sphingolipidoses are inherited genetic diseases characterized by the accumulation of glycosphingolipids. Sphingolipidoses (SP), which usually involve the loss of sphingolipid hydrolase function, are of lysosomal origin, and represent an important group of rare diseases among lysosomal storage disorders. Initial treatments consisted of enzyme replacement therapy, but, in recent decades, various therapeutic approaches have been developed. However, these commonly used treatments for SP fail to be fully effective and do not penetrate the blood-brain barrier. New approaches, such as genome editing, have great potential for both the treatment and study of sphingolipidoses. Here, we review the most recent advances in the treatment and modelling of SP through the application of CRISPR-Cas9 genome editing. CRISPR-Cas9 is currently the most widely used method for genome editing. This technique is versatile; it can be used for altering the regulation of genes involved in sphingolipid degradation and synthesis pathways, interrogating gene function, generating knock out models, or knocking in mutations. CRISPR-Cas9 genome editing is being used as an approach to disease treatment, but more frequently it is utilized to create models of disease. New CRISPR-Cas9-based tools of gene editing with diminished off-targeting effects are evolving and seem to be more promising for the correction of individual mutations. Emerging Prime results and CRISPR-Cas9 difficulties are also discussed.


CRISPR-Cas Systems/genetics , Gene Editing/methods , Sphingolipidoses/therapy , Animals , Disease Models, Animal , Enzyme Replacement Therapy , Gaucher Disease/genetics , Gaucher Disease/therapy , Humans , Sphingolipidoses/genetics , beta-Glucosidase/genetics
11.
Eur J Hum Genet ; 27(6): 919-927, 2019 Jun.
Article En | MEDLINE | ID: mdl-30737479

Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.


Glycogen Storage Disease Type II/genetics , Mucopolysaccharidosis I/genetics , Polymorphism, Single Nucleotide , Uniparental Disomy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male
12.
Int J Mol Sci ; 19(11)2018 Oct 31.
Article En | MEDLINE | ID: mdl-30384423

In order to delineate a better approach to functional studies, we have selected 23 missense mutations distributed in different domains of two lysosomal enzymes, to be studied by in silico analysis. In silico analysis of mutations relies on computational modeling to predict their effects. Various computational platforms are currently available to check the probable causality of mutations encountered in patients at the protein and at the RNA levels. In this work we used four different platforms freely available online (Protein Variation Effect Analyzer- PROVEAN, PolyPhen-2, Swiss-model Expert Protein Analysis System-ExPASy, and SNAP2) to check amino acid substitutions and their effect at the protein level. The existence of functional studies, regarding the amino acid substitutions, led to the selection of the distinct protein mutants. Functional data were used to compare the results obtained with different bioinformatics tools. With the advent of next-generation sequencing, it is not feasible to carry out functional tests in all the variants detected. In silico analysis seems to be useful for the delineation of which mutants are worth studying through functional studies. Therefore, prediction of the mutation impact at the protein level, applying computational analysis, confers the means to rapidly provide a prognosis value to genotyping results, making it potentially valuable for patient care as well as research purposes. The present work points to the need to carry out functional studies in mutations that might look neutral. Moreover, it should be noted that single nucleotide polymorphisms (SNPs), occurring in coding and non-coding regions, may lead to RNA alterations and should be systematically verified. Functional studies can gain from a preliminary multi-step approach, such as the one proposed here.


Computer Simulation , Glucosylceramidase , Models, Biological , Mutation, Missense , Sphingolipidoses , alpha-Galactosidase , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Sphingolipidoses/enzymology , Sphingolipidoses/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
13.
Genes (Basel) ; 9(9)2018 Sep 11.
Article En | MEDLINE | ID: mdl-30208654

Unverricht-Lundborg disease (ULD) is a common form of progressive myoclonic epilepsy caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. Presently, only pharmacological treatment and psychosocial support are available for ULD patients. To overcome the pathogenic effect of the ULD splicing mutation c.66G>A (exon 1), we investigated whether an antisense oligonucleotide therapeutic strategy could correct the defect in patient cells. A specific locked nucleic acid (LNA) antisense oligonucleotide was designed to block a cryptic 5'ss in intron 1. Overall, this approach allowed the restoration of the normal splicing pattern. Furthermore, the recovery was both sequence and dose-specific. In general, this work provides a proof of principle on the correction of a CSTB gene defect causing ULD through a mutation-specific antisense therapy. It adds evidence to the feasibility of this approach, joining the many studies that are paving the way for translating antisense technology into the clinical practice. The insights detailed herein make mutation-based therapy a clear candidate for personalized treatment of ULD patients, encouraging similar investigations into other genetic diseases.

14.
Arch Med Res ; 48(3): 263-269, 2017 Apr.
Article En | MEDLINE | ID: mdl-28923328

BACKGROUND: The ascertainment of mutation frequencies in the general population may have impact on the population's wellbeing and respective healthcare services. Furthermore, it may help define which approaches will be more effective for certain patients based on the genetic cause of disease. AIM OF THE STUDY: Determine the frequency of three mutations, known to be a major cause of three distinct Lysosomal Storage Diseases (LSDs). METHODS: The following pre-requisites were met: each mutation accounted for over 55% of the disease alleles among previously reported unrelated patients, all three diseases were among the most prevalent LSDs in the population under study, they all involved devastating deterioration of the nervous system, lacked curative treatment and may be fatal in childhood or adolescence. The anonymous samples used in this study were representative of the whole population; mutations were tested by PCR based methods, positive results were further confirmed. The diseases studied were Mucopolysaccharidosis type I (Hurler, MIM 607014), Tay Sachs disease variant B1 (TS, MIM 272800) and Metachromatic Leukodystrophy (MLD, MIM 250100); the mutations were, respectively, p.W402X, p.R178C and c.465+1G>A. RESULTS AND CONCLUSION: Increased carrier frequencies were found for Tay Sachs disease variant B1 HEXA p.R178C mutation (1:340) and for the infantile MLD ARSA c.465+1G> A mutation (1:350) denoting higher risk for these sub-types of disease in Portugal and possibly in individuals of Iberian ancestry. Carrier screening in target populations may provide the foundations for more effective approaches to precision medicine.


Leukodystrophy, Metachromatic/genetics , Mucopolysaccharidosis I/genetics , Tay-Sachs Disease/genetics , Alleles , Humans , Infant, Newborn , Mutation , Mutation Rate , Portugal
15.
Mol Genet Metab Rep ; 4: 68-71, 2015 Sep.
Article En | MEDLINE | ID: mdl-26937413

Cystatin B (CSTB) gene mutations cause Unverricht-Lundborg disease (ULD), a rare form of myoclonic epilepsy. The previous identification of a Portuguese patient, homozygous for a unique splicing defect (c.66G > A; p.Q22Q), provided awareness regarding the existence of variant forms of ULD. In this work we aimed at the characterization of this mutation at the population level and at the cellular level. The cellular fractionation studies here carried out showed mislocalization of the protein and add to the knowledge on this disease.

16.
Sci Total Environ ; 470-471: 1233-42, 2014 Feb 01.
Article En | MEDLINE | ID: mdl-24252198

To evaluate the accumulation of trace elements (TE) by vegetables produced in the vicinity of abandoned pyrite mines, eighteen different small farms were selected near three mines from the Portuguese sector of the Iberian Pyrite Belt (São Domingos, Aljustrel and Lousal). Total and bioavailable As, Cu, Pb, and Zn concentrations were analyzed in the soils, and the same TE were analyzed in three different vegetables, lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea), collected at the same locations. The soils were contaminated with As, Cu, Pb, and Zn, since their total concentrations exceeded the considered soil quality guideline values for plant production in the majority of the sampling sites. The maximum total concentrations for those TE were extremely high in some of the sampling sites (e.g. 1,851 mg As kg(-1) in São Domingos, 1,126 mg Cu kg(-1) in Aljustrel, 4,946 mg Pb kg(-1) in São Domingos, and 1,224 mg Zn kg(-1) in Aljustrel). However, the soils were mainly circumneutral, a factor that contributes to their low bioavailable fractions. As a result, generally, the plants contained levels of these elements characteristic of uncontaminated plants, and accumulation factors for all elements <1, typical of excluder plants. Furthermore, the estimated daily intake (EDI) for Cu and Zn, through the consumption of these vegetables, falls below the recommended upper limit for daily intake of these elements. The sampling site that stood out from the others was located at São João de Negrilhos (Aljustrel), where bioavailable Zn levels were higher, a consequence of the slight acidity of the soil. Therefore, the Zn content in vegetables was also higher, characteristic of contaminated plants, emphasizing the risk of Zn entering the human food chain via the consumption of crops produced on those soils.


Food Contamination/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Vegetables/chemistry , Environmental Monitoring , Iron , Mining , Sulfides
17.
ISRN Mol Biol ; 2013: 451298, 2013.
Article En | MEDLINE | ID: mdl-27335677

Objectives. Development of a simple mutation directed method in order to allow lowering the cost of mutation testing using an easily obtainable biological material. Assessment of the feasibility of such method was tested using a GC-rich amplicon. Design and Methods. A method of denaturing high-performance liquid chromatography (dHPLC) was improved and implemented as a technique for the detection of variants in exon 9 of the IDUA gene. The optimized method was tested in 500 genomic DNA samples obtained from dried blood spots (DBS). Results. With this dHPLC approach it was possible to detect different variants, including the common p.Trp402Ter mutation in the IDUA gene. The high GC content did not interfere with the resolution and reliability of this technique, and discrimination of G-C transversions was also achieved. Conclusion. This PCR-based dHPLC method is proved to be a rapid, a sensitive, and an excellent option for screening numerous samples obtained from DBS. Furthermore, it resulted in the consistent detection of clearly distinguishable profiles of the common p.Trp402Ter IDUA mutation with an advantageous balance of cost and technical requirements.

18.
Blood Cells Mol Dis ; 50(1): 50-2, 2013 Jan.
Article En | MEDLINE | ID: mdl-22959626

Chitotriosidase is an enzyme secreted by activated macrophages and a useful biomarker in several lysosomal and nonlysosomal diseases. However, chitotriosidase gene (CHIT1) mutations may lead to inaccuracy in the significance of this biomarker. Reports on the molecular spectrum of genetic variation in chitotriosidase are rare, and this is one of the few that focus on a specific population group. In this work we assessed the variation of CHIT1 mutations in ten normal controls and detected six missense alterations. G102S, a polymorphism with known altered catalytic properties, was the most frequent being detected in 4/10 individuals. Using allelic discrimination we tested 503 individuals, randomly sampled from the Portuguese population. Variant G102S was detected in 49.5% of the individuals and presented an allele frequency of 0.29. The results of this study showed that variability in CHIT1 gene is considerable and that G102S polymorphism presents a high frequency in the Portuguese.


Gene Frequency , Hexosaminidases/genetics , Macrophages/metabolism , Mutation , Polymorphism, Single Nucleotide , Alleles , Dried Blood Spot Testing , Female , Genotyping Techniques , Humans , Infant, Newborn , Male , Portugal
19.
Epilepsy Res ; 99(1-2): 187-90, 2012 Mar.
Article En | MEDLINE | ID: mdl-22154554

Unverricht-Lundborg disease is the most common form of progressive myoclonic epilepsy (PME). It is due to cystatin B gene (CSTB) mutations. Several mutations in CSTB gene have been published, but few in homozygosity. We describe a patient with a new splicing alteration. Mutation Gln22Gln leads to abnormal splicing and partial inclusion of intronic sequence. This is one of the few cases of homozygosity for a non-classic mutation and adds to mutational heterogeneity of CSTB.


Cystatin B/genetics , Homozygote , Mutation , Unverricht-Lundborg Syndrome/genetics , Adult , Humans , Male , Protein Isoforms/genetics , Unverricht-Lundborg Syndrome/diagnosis
20.
Genet Test Mol Biomarkers ; 15(3): 123-6, 2011 Mar.
Article En | MEDLINE | ID: mdl-21204700

Tay-Sachs disease is a rare autosomal recessive neurodegenerative disorder that results from mutations in the HEXA gene, leading to ß-hexosaminidase A (HexA) α subunit deficiency. An unusual variant of Tay-Sachs disease is known as the B1 variant. Previous studies indicated that, in northern Portugal, this is not only the most common variant but also one of the most prevalent lysosomal storage diseases. Additionally, this variant might also show a higher prevalence in populations of Portuguese and Spanish ancestry. A single mutation is invariably present in at least one of the alleles of B1 variant patients, HEXA mutation c.533G >A. To implement a method for c.533G >A testing in individuals and populations, we have optimized two distinct mutation analysis techniques, one based on restriction fragment length polymorphism analysis and the other based on allelic discrimination. We present the comparison of both methods and their advantages. Mutation screening by allelic discrimination proved to be particularly useful for the studying of large samples of individuals. It is time saving and highly reproducible, and under the conditions used, its cost is lower than the cost of polymerase chain reaction-based restriction fragment length polymorphism analysis.


DNA Mutational Analysis/economics , DNA Mutational Analysis/methods , Genetic Carrier Screening , Hexosaminidase A/genetics , Tay-Sachs Disease/diagnosis , Alleles , Humans , Mutation , Polymorphism, Restriction Fragment Length , Portugal , Reverse Transcriptase Polymerase Chain Reaction , Tay-Sachs Disease/genetics , Time Factors
...